Template-Type: ReDIF-Paper 1.0 Series: Tinbergen Institute Discussion Papers Creation-Date: 2016-04-19 Number: 16-027/III Author-Name: Xiao-Guang Yue Author-Workplace-Name: Wuhan University, China Author-Name: Rui Gao Author-Workplace-Name: Wuhan University, China Author-Name: Michael McAleer Author-Workplace-Name: National Tsing Hua University, Taiwan; Erasmus University Rotterdam, the Netherlands; Complutense University of Madrid, Spain Title: Prediction of Gas Concentration based on the Opposite Degree Algorithm Abstract: In order to study the dynamic changes in gas concentration, to reduce gas hazards, and to protect and improve mining safety, a new method is proposed to predict gas concentration. The method is based on the opposite degree algorithm. Priori and posteriori values, opposite degree computation, opposite space, prior matrix, and posterior matrix are 6 basic concepts of opposite degree algorithm. Several opposite degree numerical formulae to calculate the opposite degrees between gas concentration data and gas concentration data trends can be used to predict empirical results. The opposite degree numerical computation (OD-NC) algorithm has greater accuracy than several common prediction methods, such as RBF (Radial Basis Function) and GRNN (General Regression Neural Network). The prediction mean relative errors of RBF, GRNN and OD-NC are 7.812%, 5.674% and 3.284%, respectively. Simulation experiments shows that the OD-NC algorithm is feasible and effective. Classification-JEL: C53, C63, L71 Keywords: Gas concentration, opposite degree algorithm, data prediction, mining safety, numerical simulations File-Url: https://papers.tinbergen.nl/16027.pdf File-Format: application/pdf File-Size: 272706 bytes Handle: RePEc:tin:wpaper:20160027